
Key EncapsulatIoN and Encryption baseD on LattIces

Rachid El Bansarkhani

QuantiCor Security & TU-Darmstadt

Document generated with the help of pqskeleton version .

1

Contents

1 Introduction 4

2 General algorithm specification (part of 2.B.1) 5

2.1 Trapdoor based Encryption KindiCPA with Uniform Errors 5

2.1.1 Parameter Space and Notation . 6

2.1.2 Secret and Public Keys . 6

2.1.3 Encryption . 7

2.1.4 Decryption . 9

2.2 Trapdoor-based CCA-secure KEM KINDIKEM with Uniform Errors 10

2.3 Key Generation . 11

2.4 Encapsulation . 12

2.5 Decapsulation . 12

3 List of parameter sets (part of 2.B.1) 14

3.1 Parameter set encrypt/KINDI− 256− 3− 4− 2 14

3.2 Parameter set encrypt/KINDI− 512− 2− 2− 2 14

3.3 Parameter set encrypt/KINDI− 512− 2− 4− 1 14

3.4 Parameter set encrypt/KINDI− 256− 5− 2− 2 14

3.5 Parameter set encrypt/KINDI− 512− 3− 2− 1 14

3.6 Parameter set kem/KINDI− 256− 3− 4− 2 14

3.7 Parameter set kem/KINDI− 512− 2− 2− 2 14

3.8 Parameter set kem/KINDI− 512− 2− 4− 1 14

3.9 Parameter set kem/KINDI− 256− 5− 2− 2 15

3.10 Parameter set kem/KINDI− 512− 3− 2− 1 15

4 Design rationale (part of 2.B.1) 15

4.1 Implementation of Polynomial Multiplication and the FFT/NTT 15

4.2 Practical Instantiation of Random Oracles 16

4.3 Constant Time Implementation . 16

2

4.4 Further Implementation Details . 17

5 Detailed performance analysis (2.B.2) 17

5.1 Description of platform . 17

5.2 Time . 17

5.3 Space . 20

5.4 How parameters affect performance . 21

5.5 Optimizations . 21

6 Expected strength (2.B.4) in general 22

6.1 Security definitions . 22

6.2 Rationale . 22

7 Expected strength (2.B.4) for each parameter set 22

7.1 Parameter set encrypt/KINDI− 256− 3− 4− 2 22

7.2 Parameter set encrypt/KINDI− 512− 2− 2− 2 22

7.3 Parameter set encrypt/KINDI− 512− 2− 4− 1 22

7.4 Parameter set encrypt/KINDI− 256− 5− 2− 2 22

7.5 Parameter set encrypt/KINDI− 512− 3− 2− 1 22

7.6 Parameter set kem/KINDI− 256− 3− 4− 2 23

7.7 Parameter set kem/KINDI− 512− 2− 2− 2 23

7.8 Parameter set kem/KINDI− 512− 2− 4− 1 23

7.9 Parameter set kem/KINDI− 256− 5− 2− 2 23

7.10 Parameter set kem/KINDI− 512− 3− 2− 1 23

8 Analysis of known attacks (2.B.5) 23

9 Advantages and limitations (2.B.6) 24

References 25

3

1 Introduction

Lattices as mathematical objects have been studied by early mathematicians such as Gauss
or Dirichlet due to its extremely rich combinatorial structure appearing in many areas
of mathematics. But in the last 2 decades they have also extensively been utilized in
cryptography to build powerful cryptosystems, where the security stems from the worst-case
hardness of well studied lattice problems.

Beside the NTRU assumption the main computational assumptions exploited to build
those cryptosystems are the hardness of the problems LWE/SIS [1, 17, 14], ring-LWE/ring-
SIS [13, 16, 8, 15] and recently also MLWE/MSIS [12], which are equipped with security
guarantees based on worst-case lattice problems. However, the efficiency of cryptosystems
increases by imposing more structure. Thus, one almost only finds ring instantiations of the
respective schemes for use in practice.

The decision problems are widely used to build lattice-based encryption schemes, where the
public key and ciphertexts can be represented as LWE instances A · s + e. CPA-security is
thus obtained almost for free.

We propose trapdoor-based encryption schemes, where the message is injected into the er-
ror term. By use of the trapdoor, the secret vector and error terms are recovered during
decryption and are thus available for inspection. In many encryption schemes, this is indeed
not possible. Since the message is embedded in the error term, small expansion factors can
be realized at competitive parameters, i.e. we can encrypt more keys or data per (small)
ciphertext bit (e.g. for sign-then-encrypt). Furthermore, it can easily be transformed to
ensure CCA security. This work is based on [7, 6].

4

2 General algorithm specification (part of 2.B.1)

Parameter Definition
n power of two
xn + 1 cyclotomic polynomial
Z[x] set of polynomials with integer coefficients
Zb[x] set of polynomials with integer coefficients modulo b
R Z[x]/ 〈xn + 1〉
Rb Zb[x]/ 〈xn + 1〉
Rd
b set of d polynomials from Rb

q modulus
` module rank
k log q
[x] represents a polynomial in R with all coefficients equal to x.
bxe rounds x to the nearest integer.
g gadget g = bq/2c
g′ gadget g = 2k−2 used for higher security levels
rsec coefficient range {−rsec, . . . , rsec− 1} of the secrets and error used
p p = rsec for simplicity
t number of truncated bits per coefficient of the public key
A ∈ R`×`

q public uniform matrix
r ∈ R` secret key
p̄ ∈ R`

q decompressed public key
b̄ ∈ R`

q compressed public key
λ security parameter
δ decryption failure
µ seed of size 2λ for A ∈ R`×`

q

γ seed of size 2λ for r, r′

MLWEx,y,z MLWE instances over a module of rank x with y samples having uniform errors in {−z, . . . , z − 1}
Secret key size n` log 2p+ n`(k − t) + 2λ bits
Public key size n`(k − t) + 2λ bits
Message size n(`+ 1) log 2p bits

2.1 Trapdoor based Encryption KindiCPA with Uniform Errors

In this section, we describe our CPA-secure Module-LWE/SIS based encryption scheme
KINDICPA. It is based on the works [7, 6] and employs trapdoors in order to recover the
secret vector and error term from Module-LWE instances. In fact, the scheme embeds the
message into the error term and further encrypts a random string (similar to a KEM) in
the secret vector, which can be exploited as a key for a symmetric key cipher. We note
that our encryption scheme can be seen in some sense as a ”simplified” KEM, where c =
KindiCPA.Encrypt(pk,msg) = (s1 ← R2,Encrypt(pk,msg||s1,G(s1)), msg||s1 ← Decrypt(sk, c)
and KindiCPA.Decrypt just outputs msg. One part of the message, namely the random string,
is always hashed with a random oracle in order to deterministically generate the secret and
error term. The encryption engine Encrypt(·) thus coincides with the deterministic encryption
scheme in [10], if msg is for instance set to 0. In our KEM construction we need s1 in order
to finally deduce the key, thus we take s1 ← R2 out of KindiCPA.Encrypt .

We now give a specification of the parameter space and the algorithms.

5

We note that for the sake of completeness of the specification we the following decryption
engine to output the message and the seed. However, this is only the case when it is used for
the CCA-secure KEM construction as a subroutine since the seed is then used to derive the
session key. However, when the scheme is used as a regular CPA-secure encryption scheme
s1 is certainly not part of the output as it is not a message. Thus, all of our implementations
in the original submission packages to NIST and also the current version never output the
seed s1.

2.1.1 Parameter Space and Notation

We operate with the rings R = Z[x]/ 〈xn + 1〉 and Rq = Zq[x]/ 〈xn + 1〉, where n, q = 2k

are powers of two and k is a positive integer. In general, we define Rb := Zb[x]/ 〈xn + 1〉 for
some positive integer b. Furthermore, we introduce the gadget polynomial g = bq/2c with
all coefficients being zero except for the constant. For q = 2k, we have g = 2k−1. By ` we
denote the module rank and the message size per coefficient amounts to log2 rsec bits. Let
λ denote the bit security level and define p := rsec for simplicty. In the implementation, we
use rsec instead. By [x] we denote the polynomial with all coefficients equal to x.

2.1.2 Secret and Public Keys

Two seeds of size 2λ bits are generated, where λ ≥ 128. The first seed µ is used to generate
the public matrix A ∈ R`×`

q by use of a PRNG ∈ {Shake128, Shake256}, which consists of
`2 uniformly distributed ring elements modulo q. This seed is public. The second seed γ
of size 2λ bits is secret and serves to generate the private key r ∈ R` and the error term
r′ each consisting of ` ring elements with coefficients sampled uniformly at random from
{−p, . . . , p−1} . In particular, Shakep generates uniform random integers from {0, . . . , 2p−1}
with Shake and substracts p. The uncompressed public key part b is a module-LWE instance
b = A · r + r′ ∈ R`

q . The public key thus consists of pk := (b̄, µ) and the secret key

sk := (γ, b̄, µ) also contains the public key required for the decryption engine when recovering
the secret and error terms.

Algorithm 1: KINDICPA.KeyGen(1n, p, k, t, `) :

1 γ, µ← {0, 1}2λ
2 A ∈ R`×`

q ← Shake(µ)

3 r, r′ ∈ R`
q ← Shakep(γ)

4 b = A · r + r′

5 b̄ = Compress(b, t)
6 pk := (b̄, µ), sk := (γ, b̄, µ)
7 return (pk, sk)

Compressing the public key just requires to truncate the least t significant bits. Thus, if
the public key is uniform random, then so the compressed one within the defined range. If

6

Algorithm 2: Compress(x ∈ R`+1
q , t ∈ N) :

1 Truncate the t least significant bits of each coefficient in x .

2 b̄ = bx/2tc ∈ R`+1
2k−t .

3 return b̄

q > 2 is prime (or odd), we can compress by Compress(x ∈ R`+1
q , t ∈ N) = b̄ = b(x/q) ·2k−te,

where k := dlog qe . In this case, we have in general a t bit compression, since q is represented
by k bits.

2.1.3 Encryption

If coins =⊥ (required for the KEM) the encryptor samples a secret binary polynomial s1
with coefficients from {0, 1} uniformly at random, otherwise coins already contains s1 (for the
KEM). First, the matrix A ∈ R`

q is deterministically generated from µ. Subsequently, the
public key is retrieved and decompressed via multiplication with 2t. We note that for a prime
modulus q, decompression is accomplished by b(b̄/2k−t) ·qe, where k := dlog qe . The random
binary polynomial s1 is extended via the random oracle G implemented as Shake to ` − 1
uniform random polynomials (s2, . . . , s`) with coefficients in the range {0, . . . , 2p − 1}, one
random polynomial s̄1 in the range {0, . . . , p−1}, i.e. one bit per coefficient less than the other
polynomials, a bit string of size n(`+1) log 2p bits, and ` polynomials with coefficients in the
range {−2t−1, . . . , 2t−1−1}. To obtain a secret polynomial s1 over the full rangeR2p, we shift
s̄1 by one bit and add s1. The message msg is xored with the uniform random string ū and
finally split into n log 2p bit chunks that are encoded as polynomials ui from Rn

2p with log 2p
bits per entry. The error term is just u centered around zero, i.e. each coefficient is translated
by p. Since the least t bits of the public key are truncated, we add to each decompressed
public key polynomial p̄i the polynomial wi such that p is uniform random, i.e. pi equals
to 2t · b̄i + wi except for p1 which additionally contains g for decryption. The ciphertext is
computed as a module-LWE instances with the centered secret s = (s1 − [p], . . . , s` − [p]).
To enable recovery of s1 we adjust the last ciphertext sample via subtraction of g · [p], which
vanishes modulo q for g = 2k−1 and p = 2x with x ≥ 1.

For n = 256 at a post quantum security level of 256 bits, we need s1 ← R4 and g = 2k−2 .
The coefficients are recovered with the alternative subroutine Recover′.

Theorem 2.1 In the random oracle model, assume that there exists a PPT-adversary A
against the scheme, then there exists a reduction D that breaks MLWE`,`+1,p such that
AdvCPAKindi(A) ≤ 3AdvMLWE

`,`+1,p(D) .

Proof. We proceed in a sequence of hybrids. Thus, letH0 be the real IND− CPA game. InH1,
the MLWE instance b = A ·r+e in the key generation step is changed to a uniform random
value. Since q = 2k, the k−t most significant bits of the coefficients in b form the coefficients
of the compressed public key. Hence, b̄ remains uniform random in R`

2k−t . If there exists

7

Algorithm 3: KINDICPA.Encrypt(pk,msg = {0, 1}n(`+1) log 2p; coins =⊥ or s1 ∈ R2) :

1 s1 ← R2

2 A← Shake(µ)
3 p̄ = Decompress1(b̄, t)

4 w̄, ū, s̄1, (s2, . . . , s`) ∈ R`
2t × {0, 1}n(`+1) log 2p ×Rp ×R`−1

2p ← G(s1) := Shake(s1)

5 w = (w̄1 − [2t−1], . . . , w̄` − [2t−1])
6 p = (p̄1 + w1 + g, p̄2 + w2, . . . , p̄` + w`)
7 s = (s1 + 2 · s̄1 − [p], s2 − [p], . . . , s` − [p])>

8 u = ū⊕msg
9 u = Encode(u)

10 e = (u1 − [p], . . . ,u` − [p])>, e = u`+1 − [p]

11 (c, c)> = (A> · s + e,p · s + g · [p] + e) ∈ R`+1
q

12 return (c, c)

Algorithm 4: Decompress(x ∈ R`+1
q , t ∈ N) :

1 b = 2t · x

Algorithm 5: Encode(u ∈ {0, 1}n(`+1) log 2p) :

1 Pack log 2p bits of u into each coefficient of ui ∈ R for 1 ≤ i ≤ `+ 1.
2 Each ui ∈ R contains n · log 2p bits.
3 u = (u1, . . . ,u`+1)
4 return u

an adversary that can distinguish the hybrids H0 and H1, then there exists a reduction D0

that can distinguish MLWE`,`,p from uniform such that AdvH0,H1(D0) ≤ AdvMLWE
`,`,p (D0). In the

hybrid H2, the elements w̄, ū, s̄1, (s2, . . . , s`) are replaced by uniform random elements (RO)
such that e, e`+1, s are again uniform random. We note that p ∈ R`

q in hybrid H2 is uniform
random too even after compression/decompression due to the additional polynomial wi :=
w̄i − [2t−1] with uniform random coefficients from {−2t−1, . . . , 2t−1 − 1}. Thus, we obtain
AdvH1,H2(D1) ≤ AdvMLWE

`,`,p (D1) for the chosen parameters. Finally, in H3 the ciphertexts
c = A> · s + e and c = p · s + g · [p] + e are replaced by uniform random elements. If there
exists an adversary that can distinguish the hybrids H2 and H3, then there exists a reduction
D2 that can distinguish MLWE`,`+1,p from uniform such that AdvH2,H3(D2) ≤ AdvMLWE

`,`+1,p(D2).

We now analyze the advantage of an adversary in H0, which is given by

AdvH0(A) := AdvCPAKindi(A) = |P [b = b′ in H0]− 1/2|
≤ AdvH0,H1(D) + AdvH1,H2(D) + AdvH2,H3(D) ≤ 3AdvMLWE

`,`+1,p(D) .

8

2.1.4 Decryption

The decryption engine works similar to the encryption engine. First, the least significant
bit of the coefficients of s1 are recovered via s1 = Recover(v) ∈ R2 and v = c − c · r> =
2k−1s1 + d mod q = 2k−1s1 + d mod q for some small ‖d‖∞ . This recovery function has also
been used for instance in [3] avoiding if-else checks. From s1 the vectors ū and si are derived.
We obtain (u1 − [p], . . . ,u`+1 − [p]) = (e, e) = (c − A> · s, c − p · s) mod q . The decoder
Decode(u) maps the set of polynomials with coefficients in the range [0, 2p] to a bit string
such that the bit string msg = Decode(u)⊕ ū returns the message. The second output value
s1 is necessary for the KEM.

Algorithm 6: KINDICPA.Decrypt(sk, (c, c)) :

1 A← Shake(µ)
2 r← Shakep(γ)
3 p̄ = Decompress(b̄, t)
4 v = c− c · r>
5 s1 = Recover(v) ∈ R2

6 w̄, ū, s̄1, (s2, . . . , s`) ∈ R`
2t × {0, 1}n(`+1) log 2p ×Rp ×R`−1

p ← Shake(s1)

7 w = (w̄1 − [2t−1], . . . , w̄` − [2t−1])
8 p = (p̄1 + w1 + g, p̄2 + w2, . . . , p̄` + w`)
9 s = (s1 + 2 · s̄1 − [p], s2 − [p], . . . , s` − [p])>

10 (e, e) = (u1 − [p], . . . ,u`+1 − [p]) = (c−A> · s, c− p · s) mod q
11 msg = Decode(u)⊕ ū
12 return (msg, s1)

Algorithm 7: Decode(u ∈ R`+1
2p) :

1 Concatenate the least significant log 2p bits of all coefficients in u into u.

2 return u ∈ {0, 1}n(`+1) log 2p

Algorithm 8: Recover(v ∈ Rq) :

1 Let vi be in {0, . . . , q − 1} .
2 For i = 1 to n do

3 bi = bvi/2k−1e mod 2
4 return b ∈ R2

9

Algorithm 9: Recover′(v ∈ Rq) :

1 Let vi be in {0, . . . , q − 1} .
2 For i = 1 to n do

3 bi = bvi/2k−2e mod 4
4 return b ∈ R4

Theorem 2.2 Let the coefficients of rj, r
′
j, sj− [p] and ei = ui− [p] be uniformly distributed

from {−p, . . . , p− 1} for 1 ≤ j ≤ ` and 1 ≤ i ≤ ` + 1. Further, let the coefficients of wj be
sampled uniformly at random from {−2t−1, . . . , 2t−1 − 1} for 1 ≤ j ≤ `+ 1. Then, for

δ := P [‖x> · s + e− e · r>‖∞ ≥ q/4]

the algorithm is (1− δ) correct, where x = w> + Decompress(Compress(A · r + r′))−A · r.

Proof. We choose the parameters p and q such that s1 is correctly recovered. Let s =
(s1 − [p], . . . , s` − [p]), then

‖v − 2k−1s1‖∞ = ‖c− c> · r− 2k−1s1‖∞
= ‖p · s + g · [p] + e− (A> · s + e)> · r− 2k−1s1‖∞
= ‖g · (s1 − [p]) + g · [p] + e+ x> · s− e> · r− 2k−1s1‖∞
= ‖x> · s + e− e> · r‖∞ < q/4 .

We note that in case p = 2κ for κ > 0, then the term g · [p] vanishes and is not needed in
the computation. We note that in case g = bq/2c for a prime modulus q > 2 the difference
g · ‖s1 − 2k−1s1‖∞ ≤ 2p would be very small and not vanish completely.

For n = 256 and λ = 256 (key size 2λ bits resisting Grover’s search), we have g = 2k−2. We
define the correctness requirement with respect to the bound q/8 rather than q/4, i.e.

δ := P [‖x> · s + e− e · r>‖∞ ≥ q/8] .

2.2 Trapdoor-based CCA-secure KEM KINDIKEM with Uniform Er-
rors

The key encapsulation mechanism KINDIKEM has the same parameter space as KINDICPA. We
adopt the transformation [10] in order to realize a KEM by our construction. In fact, we
already indicated in Section 2.1 that some of the transformations are already encompassed
in our construction. Thus, the construction gets very simple.

10

Algorithm 10: QEncaps(pk) :

1 m← M
2 c := Enc(pk,m,G(m))
3 d := H(m)
4 K := H′(m, c)
5 return (K, c, d)

Algorithm 11: QDecaps(sk, c) :

1 m′ ← Dec(sk, c)
2 c′ := Enc(pk,m′,G(m′))
3 if c′ = c ∧ H(m′) = d
4 return K := H′(m′, c)
5 else
6 return K := H′(s, c)

The generic construction secure in the quantum random oracle model is given by the following
two algorithms, where G,H,H′ denote random oracles.

We state the theorem for tight security, when the computation and check of d is omit-
ted. For that we combine the security implications [10] IND− CPA =⇒ OW − PCVA and
OW − PCVA =⇒ IND− CCA .

Theorem 2.3 Let M denote the message space. Furthermore, for any IND− CCA adversary
that makes qG queries to the random oracle G, qH queries to the random oracle H, and qD
queries to the decapsulation oracle, there exists an IND− CPA adversary such that

AdvIND−CCAKEM (B) ≤ qG · δ +
2 · qG + qH
|M|

+ 3AdvIND−CPAPKE (A) (1)

and the running time of A is about that of B.

This reduction is tight. Thus, we can tightly reduce it from MLWE`,`+1,p .

For security in the quantum random oracle model, which requires d, there is an alternative
theorem in [10].

2.3 Key Generation

The key generation step just outputs the keys of KINDICPA .

11

Algorithm 12: KINDICCA−KEM.KeyGen(1n, p, k, t, `) :

1 (pk, sk)← KINDICPA.KeyGen(1n, p, k, t, `)
2 return (pk, sk)

2.4 Encapsulation

The encapsulation mechanism slightly differs from the generic construction. We do not
need to input G(s1) but rather just s1. In fact, the encryption engine KINDICPA.Encrypt
does this implicitly within the algorithm as it applies G(s1) to deterministically deduce the
secret and error polynomials. At the same time s1 is encrypted (see KINDICPA.Encrypt).
As in the generic construction, we compute the key K ∈ {0, 1}2λ and d ∈ {0, 1}2λ. Due
to the fact that KINDI has a large message container, we can also encrypt d and send a
ciphertext that is as large as in KINDICPA. Finally, the ciphertext is output. We implement
the different random oracles as H(s1) := Shake(s1||padding),H′(s1, c) := Shake(s1, c) and
G(s1) := Shake(s1), where we use a one byte padding = 4.

Algorithm 13: KINDICCA−KEM.Encaps(pk) :

1 s1 ← {0, 1}n
2 d← H(s1)
3 (c, c)> ← KINDICPA.Encrypt(pk, d; s1)
4 K ← H′(s1, (c, c))
5 return (K, (c, c))

We note that by setting d = 0 (or something deterministic) we obtain the CCA-secure
scheme in the random oracle model. For the quantum random oracle variant, d is retrieved
during decryption.

2.5 Decapsulation

The decapsulation mechanism implicitly performs many steps of the generic construction
within KINDICPA.Decrypt. For instance, it is not required to encrypt s′1 again once recovered
from the ciphertext as we prove below. It is only necessary, to check that the value d = H(s′1)
is equal to the recovered value d′ . In case, the check is correct the key is deduced, otherwise
it outputs a random key for some uniform random s ∈ {0, 1}2λ.

In the following lemma we show that it suffices to only check d′ = d in order to satisfy the
conditions from [10] for key decapsulation.

Lemma 2.4 If d′ = d is satisfied, then s′1 = s1 and (c, c) = KINDICPA.Encrypt(pk, d; s′1).

Proof. If d′ = d, then G(s1) = G(s′1), which means that s′1 has been correctly recovered. As

12

Algorithm 14: KINDICCA−KEM.Decaps(sk, (c, c)) :

1 (d′, s′1)← KINDICPA.Decrypt(sk, (c, c))
2 if d′ = d := H(s′1)
3 return H′(s′1, (c, c))
4 else
5 return H′(s, (c, c))

a result, we have that c, c is uniquely generated from s and u = Encode(ū⊕ d) with

w̄, ū, s̄1, (s2, . . . , s`)← G(s′1)

and s1 = s1 + 2s̄1.

We stress that it is possible to just check that d′ = 0, if in the random oracle model d is set
to 0 during encapsulation (see Section 5.5).

Furthermore, we note that if KINDICPA is (1 − δ) correct, then so is the resulting
KINDICCA−KEM.

13

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set encrypt/KINDI− 256− 3− 4− 2

Public key encryption with n = 256, ` = 3, p = 4, t = 2 and q = 214.

3.2 Parameter set encrypt/KINDI− 512− 2− 2− 2

Public key encryption with n = 512, ` = 2, p = 2, t = 2 and q = 213.

3.3 Parameter set encrypt/KINDI− 512− 2− 4− 1

Public key encryption with n = 512, ` = 2, p = 4, t = 1 and q = 214.

3.4 Parameter set encrypt/KINDI− 256− 5− 2− 2

Public key encryption with n = 256, ` = 5, p = 2, t = 2 and q = 214.

3.5 Parameter set encrypt/KINDI− 512− 3− 2− 1

Public key encryption with n = 512, ` = 3, p = 2, t = 1 and q = 213.

3.6 Parameter set kem/KINDI− 256− 3− 4− 2

Key encapsulation mechanism with n = 256, ` = 3, p = 4, t = 2 and q = 214.

3.7 Parameter set kem/KINDI− 512− 2− 2− 2

Key encapsulation mechanism with n = 512, ` = 2, p = 2, t = 2 and q = 213.

3.8 Parameter set kem/KINDI− 512− 2− 4− 1

Key encapsulation mechanism with n = 512, ` = 2, p = 4, t = 1 and q = 214.

14

3.9 Parameter set kem/KINDI− 256− 5− 2− 2

Key encapsulation mechanism with n = 256, ` = 5, p = 2, t = 2 and q = 214.

3.10 Parameter set kem/KINDI− 512− 3− 2− 1

Key encapsulation mechanism with n = 512, ` = 3, p = 2, t = 1 and q = 213.

4 Design rationale (part of 2.B.1)

We propose a simple and highly efficient trapdoor-construction, where the public key B
represents an MLWE instance endowed with a trapdoor T. Roughly spoken, ciphertexts are
generated as MLWE instances B> · s + e, where s and e = u ⊕ msg are vectors of uniform
random polynomials. The message is simply xored to the error polynomials such that large
amounts of data can be encrypted at very competitive parameters, for instance useful in
sign-then-encrypt scenarios or for the transmission of encrypted key bundles etc. Different
to other proposals, the decryption engine can recover all s, e = u ⊕ msg and thus msg by
means of the trapdoor T. This further allows to inspect the secret and error polynomials and
use all of the information stored therein. Our proposal not only encrypts arbitrary messages,
but also outputs by construction a uniform random string s1 for free that can act as a key
for a symmetric key cipher as required in a KEM. In other words, the random coins used to
encrypt the message can be recovered by use of the trapdoor.

4.1 Implementation of Polynomial Multiplication and the
FFT/NTT

For multiplication of polynomials we make extensive use of the Fast Fourier Transformation,
which is a divide-and-conquer algorithm and outputs the result in O(log n) steps. We
precompute tables containing powers of the complex root of unity used for the FFT. Our
AVX2 optimized variant processes 4 coefficients at once.

Different to our previous submission we adapted the FFT following the work [18]. The work
suggests a variant for the FFT/NTT, wich can be applied in a straightforward manner. By
this modification we omit the use of the costly bit-reversal function, which in turn improves
the speed significantly. Instead of using the bit-reversal function, the forward and inverse
FFT have been redesigned to match [18]. In addition, due the linearity of the FFT we reduce
the number of the inverse FFT. To this end, we use the following equation∑

i

FFT−1(FFT(ai) ◦ FFT(bi)) = FFT−1(
∑
i

FFT(ai) ◦ FFT(bi)),

15

a fact that is simple but effective.

In case the NTT is used for a prime modulus q ≡ 1 mod 2n, one can use the framework
of [18] directly.

4.2 Practical Instantiation of Random Oracles

We choose to implement random oracles with the FIPS 202 standardized Shake. It is also
used in other lattice-based schemes such as Frodo and Kyber. The matrix A is generated
by use of a PRNG ∈ {Shake128, Shake256} and a uniform random input string µ of size
2λ bits. In fact, we only use Shake256 except for one parameter set namely n = 256 and
` = 3. For the optimized variants we use the Keccak code package1 that allows via AVX2
to compute 4 independent streams of random values on 4 inputs of the same length. Each
input inputi = µ||i is obtained by the seed concatenated with a one byte number 0 ≤ i ≤ 3
resulting in independent uniform random streams. Thus, we do not store A but rather derive
it from µ each time we need it. Since we work modulo 2k, each k bit chunk is considered
as a little endian integer representing one coefficient. Similarly, we generate uniform secrets
and errors just from Shake(s1). Our choice for p to be a power of two allows us to proceed
as with the matrix A taking the required bits from Shake for w̄, ū,̄s1 and s2, . . . , s` . For the
random oracle G we use the same padding scheme in our optimized variant. The message is
xored to ū prior to encoding.

However, for the computation of d ∈ {0, 1}2λ in the KEM we append 4 to s1 before invoking
H := PRNG. We implement H′ := PRNG without any padding in the reference implementa-
tion. For the optimized variant we split the large ciphertext into 4 inputs and invoke Shake
outputting 4 streams of size 2λ bits each. The outputs are subsequently concatenated with
s1 serving as input to one regular Shake call.

4.3 Constant Time Implementation

The scheme execution does not depend on the secrets. This includes the error recovery
subroutine and all the operations involved. We heavily rely on shake as a pseudorandom
number generator, which outputs random bits in constant time. In the previous submission,
we used rounding functions of the C math library, which makes use of branches. This
observation has also been made in [11]. However, in the current version the error recovery
subroutine is implemented by use of only elementary operations in C such as Ands, shifts
and Ors without any secret-dependent branches.

1https://keccak.team/

16

https://keccak.team/

4.4 Further Implementation Details

We mark the end of a message by a one byte padding. Modulo q = 2k operations are obtained
almost for free as it just requires to take the k least significant bits.

The ciphertexts, compressed public keys and secret keys are stored in little endian format.
The k − t bit coefficients of the compressed public key are appended to each other before
the seed µ is concatenated to the resulting string. For the secret key we proceed similarly.

The scheme can also be implemented with a prime modulus such that the NTT is applicable.
In this case, the compression and decompression function slightly differ from the q = 2k case
as pointed out in the respective sections.

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

We implemented both our CPA/CCA secure schemes on a machine that is specified by an
Intel Core i5-6200U processor (Skylake) operating at 2.3GHz and 8GB of RAM running
on one core. We used Ubuntu 17.10 64-bit (Kernel 4.13.0-17) and gcc version 7.2.0 with
compilation flags

• Reference: -fomit-frame-pointer -Ofast -march=native

• AVX Version: -fomit-frame-pointer -Ofast -msse2avx -mavx2 -march=native

5.2 Time

The following measurements are for kem and encrypt. The difference in running times
between kem and encrypt stems from 3 additional invocations of Shake for kem. We took
the average over 1 Mio measurements.

Kindi-256-3-4-2:

• Reference Implementation:

– Key generation in cycles: 111416

– Encryption/Encaps in cycles: (encrypt,kem)=(130204,142817)

– Decryption/Decaps in cycles: (encrypt,kem)=(158467,177532)

• AVX Implementation:

– Key generation in cycles: 68319

17

– Encryption/Encaps in cycles: (encrypt,kem)=(78787,93652)

– Decryption/Decaps in cycles: (encrypt,kem)=(93257,113653)

We note that in case we use Shake256 key generation increases by about 3000-6000 cycles,
encryption by about 3000-8000 cycles, encaps by about 8000-10000, decryption by 5000-6000
cycles and decaps by about 7000-10000 cycles (for the reference implementation and AVX
implementation). The decryption failure rate is here δ = 2−192. In the AVX implementation,
encryption is carried out at a speed of 320 cycles per message byte or 68 cycles per ciphertext
byte, whereas decryption is accomplished at a rate of 396 cycles per message byte or 84 cycles
per ciphertext byte.

Kindi-512-2-2-2:

• Reference Implementation:

– Key generation in cycles: 118600

– Encryption/Encaps in cycles: (encrypt,kem)=(153807,178471)

– Decryption/Decaps in cycles: (encrypt,kem)=(206709,228405)

• AVX Implementation:

– Key generation in cycles: 75651

– Encryption/Encaps in cycles: (encrypt,kem)=(96450,122521)

– Decryption/Decaps in cycles: (encrypt,kem)=(120017,146319)

The decryption failure rate is here δ = 2−284. In the AVX implementation, encryption
is carried out at a speed of 373 cycles per message byte or 57 cycles per ciphertext byte,
whereas decryption is accomplished at a rate of 488 cycles per message byte or 75 cycles per
ciphertext byte.

Kindi-512-2-4-1:

• Reference Implementation:

– Key generation in cycles: 126369

– Encryption/Encaps in cycles: (encrypt,kem)=(158942,190550)

– Decryption/Decaps in cycles: (encrypt,kem)=(209795,232604)

• AVX Implementation:

– Key generation in cycles: 82020

– Encryption/Encaps in cycles: (encrypt,kem)=(97694,127527)

– Decryption/Decaps in cycles: (encrypt,kem)=(129559,159846)

18

The decryption failure rate is here δ = 2−165. In the AVX implementation, encryption
is carried out at a speed of 248 cycles per message byte or 53 cycles per ciphertext byte,
whereas decryption is accomplished at a rate of 324 cycles per message byte or 69 cycles per
ciphertext byte.

Kindi-256-5-2-2:

• Reference Implementation:

– Key generation in cycles: 268648

– Encryption/Encaps in cycles: (encrypt,kem)=(296470,323689)

– Decryption/Decaps in cycles: (encrypt,kem)=(344806,374417)

• AVX Implementation:

– Key generation in cycles: 160556

– Encryption/Encaps in cycles: (encrypt,kem)=(173906,195571)

– Decryption/Decaps in cycles: (encrypt,kem)=(198187,221439)

The decryption failure rate is here smaller than δ = 2−216.In the AVX implementation,
encryption is carried out at a speed of 731 cycles per message byte or 104 cycles per ciphertext
byte, whereas decryption is accomplished at a rate of 857 cycles per message byte or 122
cycles per ciphertext byte.

Kindi-512-3-2-1:

• Reference Implementation:

– Key generation in cycles: 223902

– Encryption/Encaps in cycles: (encrypt,kem)=(268237,299651)

– Decryption/Decaps in cycles: (encrypt,kem)=(341753,365118)

• AVX Implementation:

– Key generation in cycles: 140641

– Encryption/Encaps in cycles: (encrypt,kem)=(164223,197927)

– Decryption/Decaps in cycles: (encrypt,kem)=(194572,240839)

The decryption failure rate is here δ = 2−276. In the AVX implementation, encryption
is carried out at a speed of 502 cycles per message byte or 77 cycles per ciphertext byte,
whereas decryption is accomplished at a rate of 636 cycles per message byte or 97 cycles per
ciphertext byte.

19

5.3 Space

The secret key, public key and ciphertext sizes can be computed straightforwardly. The sizes
of the CPA-secure scheme and the KEM are equal except for the ciphertext size of the KEM,
which is larger by 2λ. In the following, we indicate the size for the KINDICPA.

The ciphertext size is n(`+ 1)k/8 bytes, whereas the public key pk amounts to (n`(k− t) +
2λ)/8 bytes including the seed µ for the matrix A. The secret key amounts to (n`(k − t) +
4λ)/8 bytes including the size of the public key. The message size for encryption amounts to
n`(log 2p)/8−1 bytes, where one byte is used for the padding. Thus, we obtain the following.

Kindi-256-3-4-2:

• Ciphertext size: 1792 bytes

• Public key size: 1184 bytes

• Secret key size: 1248 bytes

• Message size: 383 bytes

• Message expansion factor: 4.7

Kindi-512-2-2-2:

• Ciphertext size: 2496 bytes

• Public key size: 1456 bytes

• Secret key size: 1584 bytes

• Message size: 383 bytes

• Message expansion factor: 6.5

Kindi-512-2-4-1:

• Ciphertext size: 2688 bytes

• Public key size: 1728 bytes

• Secret key size: 1856 bytes

• Message size: 575 bytes

• Message expansion: 4.7

20

Kindi-256-5-2-2:

• Ciphertext size: 2688 bytes

• Public key size: 1984 bytes

• Secret key size: 2112 bytes

• Message size: 383 bytes

• Message expansion factor: 7

Kindi-512-3-2-3:

• Ciphertext size: 3328 bytes

• Public key size: 2368 bytes

• Secret key size: 2496 bytes

• Message size: 511 bytes

• Message expansion: 6.5

5.4 How parameters affect performance

The main parameters governing the performance and security level of the schemes are
n, `, q and p = rsec. For increasing parameters n, p or ` the security of the overall system is
increased while simultaneously decreasing the performance level via n and ` or increasing
the secret key size at a higher decyption failure rate via p. For increasing q and all other
parameters being fixed, the decryption failure rate and the security of the system decrease
while the ciphertext and public key sizes increase.

5.5 Optimizations

We generated the secret key from the secret seed γ of size 2λ bits during decryption. In
pricipal, it is also possible to generate public keys just by use of the secret seed γ and the
public seed µ. If in applications, the running time is of interest, then all keys r, b̄, and
the matrix A are stored rather than the seeds. In case, key sizes are more important than
running time, then one may store only the seeds and generate the respective keys during
decryption or decapsulation. Furthermore, it is possible to compress the ciphertext in case
the message container is not fully exhausted, i.e. one can compress the coefficients of ci if the
respective error terms do not contain message bits. For the simplicity of our construction, we
did not include these modifications. As already explained in the encapsulation mechanism,
we can avoid the transmission of d in plain and instead check that d′ = H(s′1), where s′1 and
d′ are recovered during decryption.

21

6 Expected strength (2.B.4) in general

6.1 Security definitions

The KEM is designed for IND-CCA2 security and PKE ensures CPA security. See Section 7
for quantitative estimates of the security of specific parameter sets.

6.2 Rationale

See Section 8 for an analysis of known attacks. This analysis also presents the rationale for
these security estimates.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set encrypt/KINDI− 256− 3− 4− 2

Classical security PQ-security Category
181 164 3

7.2 Parameter set encrypt/KINDI− 512− 2− 2− 2

Classical security PQ-security Category
229 207 5

7.3 Parameter set encrypt/KINDI− 512− 2− 4− 1

Classical security PQ-security Category
255 232 5

7.4 Parameter set encrypt/KINDI− 256− 5− 2− 2

Classical security PQ-security Category
270 251 5

7.5 Parameter set encrypt/KINDI− 512− 3− 2− 1

Classical security PQ-security Category
365 330 5

22

7.6 Parameter set kem/KINDI− 256− 3− 4− 2

Classical security PQ-security Category
181 164 3

7.7 Parameter set kem/KINDI− 512− 2− 2− 2

Classical security PQ-security Category
229 207 5

7.8 Parameter set kem/KINDI− 512− 2− 4− 1

Classical security PQ-security Category
255 232 5

7.9 Parameter set kem/KINDI− 256− 5− 2− 2

Classical security PQ-security Category
270 251 5

7.10 Parameter set kem/KINDI− 512− 3− 2− 1

Classical security PQ-security Category
365 330 5

8 Analysis of known attacks (2.B.5)

We give a summary of the most relevant attacks against our MLWE based encryption
schemes. To this end, MLWE instances are considered as regular LWE instances of
dimension ` · n with (` + 1) · n samples. To date, there exist no better cryptanalytic
algorithms to attack MLWE for concrete parameters than the ones on regular LWE.
The best way to attack our encryption schemes is to mount a key recovery attack or
to consider attacks against the ciphertext. Since we chose the same parameter for the
ciphertext and public key, we need only to consider attacks against the ciphertext since
it further contains an additional ring sample as compared to the public key. We apply
the conservative methodology of [2] in order to estimate the attack complexity or to
choose reasonable parameters. Currently, the best way to attack the system is carried
out with the primal and dual attacks using BKZ. This lattice reduction algorithm reduces
the basis of the lattice using polynomial calls to an SVP oracle in a smaller dimen-
sion. For the computation of the attack complexity only one call to the SVP oracle is

23

taken into account. All other factors are also removed leading to very conservative estimates.

In the classical setting the best-known attack bound is 20.292b deduced from lattice sieving
whereas in the post-quantum setting the SVP solver requires 20.265b with quantum sieving.
Here b denotes the block size. The best plausible security estimates rely on building lists of
size 20.2075b.

The primal attack on our cryptosystem consists in finding a unique solution (s, e, 1) for the
SIS instance [P> | I | − c] · x ≡ 0 mod q for x ∈ Zn(2`+1)+1 and pk considered as a matrix

P = [A | p>] ∈ Zn`×n(`+1)
q and c ∈ Zn(`+1)

q .

For the dual attack the attacker tries to find a short vector in the dual lattice that is
employed to distinguish MLWE samples from uniform random samples in order to break
decision-MLWE.

We do not need to take (quantum) hybrid attacks [9] into account as they often only get
significant for sparse binary or trinary secrets and errors, which is never the case for the cho-
sen parameters. Those attacks are based on Howgrave-Graham’s Hybrid Attack combining
lattice reduction with guessing techniques such as brute-force or meet-in-the-middle attacks.

Algebraic attacks such as finding short generators do not apply in our setting as the param-
eters required for a successful attack are far from being practical [4, 5].

9 Advantages and limitations (2.B.6)

The encryption scheme KINDI is a simple and flexible trapdoor-based encryption scheme,
which by use of the trapdoor allows to retrieve back the error term and secret key from
Module-LWE based ciphertexts. By this, it is possible to inspect all the constituents, if they
comply with the allowed parameters in order to detect, for instance, inadmissible error terms.
Furthermore, lattice-based trapdoor constructions are used in many areas of cryptography,
not only for encryption or KEMs. Thus, KINDI may serve as a basis for new primitives. For
instance, when using a slightly modified KINDICPA in combination with a random oracle tag
mac = H(s, e), we already obtain a scheme that can be employed in CCA2-secure scenarios,
since an adversary needs to know the unique inputs in order compute mac or differently
spoken a correct ciphertext requires already to show knowledge of all its inputs via the mac.

In addition, KINDI allows to encrypt huge amount of data at once resulting in low message
expansion factors as compared to other proposals since the error serves to transport the
message. This is particularly interesting for sign-then-encrypt scenarios or for the transport
of key bundles etc. For appropriate parameters signatures (uniform or Gauss) could also act
as the error term, in this case the encryption scheme needs not to compute ū. Our proposal
always by construction encrypts both a uniform random key s1 and arbitrary messages.

24

Thus, it inherently tends to act as a KEM. Due to this, we see that many steps from [10]
are already implicit in our CPA-secure construction resulting in very small overhead. In
fact, even the generation of s1 in KINDICCA−KEM is implicitly accomplished in the encryption
engine. Due to uniform random secrets and error vectors generated by SHAKE and the
applied operations our implementations are constant-time.

There exist a wide range of parameters for various security levels. Increasing the parameters
allows to encrypt more data at once without loosing efficiency. Due to small parameters and
for primes q close to some y · 2k for a suitable k, we can even use the NTT transform very
efficiently applicable in constrained devices preferring to operate over integers than doubles.

Our KINDICCA−KEM can easily be deployed into the TLS protocol as shown by Google for
NewHope or in constrained devices or can be transformed into an authenticated key exchange
protocol using known transformations.

References

[1] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC
’96, pages 99–108, New York, NY, USA, 1996. ACM.

[2] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical,
quantum-secure key exchange from LWE. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 1006–1018, 2016.

[3] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015, pages 553–570, 2015.

[4] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. IACR Cryptology ePrint Archive, 2015:313, 2015.

[5] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class rela-
tions and application to ideal-svp. In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 324–348,
2017.

[6] Rachid El Bansarkhani. Lara: A design concept for lattice-based encryption. In Ian
Goldberg and Tyler Moore, editors, Financial Cryptography and Data Security, pages
377–395, Cham, 2019. Springer.

25

[7] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes Buchmann. Augmented learning
with errors: The untapped potential of the error term. In Rainer Böhme and Tatsuaki
Okamoto, editors, Financial Cryptography and Data Security, pages 333–352, Berlin,
Heidelberg, 2015. Springer.

[8] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science. Springer, 2010.

[9] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer. A hybrid lattice
basis reduction and quantum search attack on LWE. In Post-Quantum Cryptography
- 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,
2017, Proceedings, pages 184–202, 2017.

[10] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. IACR Cryptology ePrint Archive, 2017:604, 2017.

[11] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster multiplication
in Z2m [x] on cortex-m4 to speed up nist pqc candidates. Cryptology ePrint Archive,
Report 2018/1018, 2018. https://eprint.iacr.org/2018/1018.

[12] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Des. Codes Cryptography, 75(3):565–599, 2015.

[13] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are col-
lision resistant. Electronic Colloquium on Computational Complexity (ECCC), (142),
2005.

[14] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. In 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 372–381, 2004.

[15] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-
lwe for any ring and modulus. In Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 461–473, 2017.

[16] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. Electronic Colloquium on Computational Complexity
(ECCC), (158), 2005.

[17] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 84–93, 2005.

[18] Gregor Seiler. Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptography.
Cryptology ePrint Archive, Report 2018/039, 2018. https://eprint.iacr.org/2018/
039.

26

https://eprint.iacr.org/2018/1018
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039

	Introduction
	General algorithm specification (part of 2.B.1)
	Trapdoor based Encryption KindiCPA with Uniform Errors
	Parameter Space and Notation
	Secret and Public Keys
	Encryption
	Decryption

	Trapdoor-based CCA-secure KEM KINDIKEM with Uniform Errors
	Key Generation
	Encapsulation
	Decapsulation

	List of parameter sets (part of 2.B.1)
	Parameter set encrypt/KINDI-256-3-4-2
	Parameter set encrypt/KINDI-512-2-2-2
	Parameter set encrypt/KINDI-512-2-4-1
	Parameter set encrypt/KINDI-256-5-2-2
	Parameter set encrypt/KINDI-512-3-2-1
	Parameter set kem/KINDI-256-3-4-2
	Parameter set kem/KINDI-512-2-2-2
	Parameter set kem/KINDI-512-2-4-1
	Parameter set kem/KINDI-256-5-2-2
	Parameter set kem/KINDI-512-3-2-1

	Design rationale (part of 2.B.1)
	Implementation of Polynomial Multiplication and the FFT/NTT
	Practical Instantiation of Random Oracles
	Constant Time Implementation
	Further Implementation Details

	Detailed performance analysis (2.B.2)
	Description of platform
	Time
	Space
	How parameters affect performance
	Optimizations

	Expected strength (2.B.4) in general
	Security definitions
	Rationale

	Expected strength (2.B.4) for each parameter set
	Parameter set encrypt/KINDI-256-3-4-2
	Parameter set encrypt/KINDI-512-2-2-2
	Parameter set encrypt/KINDI-512-2-4-1
	Parameter set encrypt/KINDI-256-5-2-2
	Parameter set encrypt/KINDI-512-3-2-1
	Parameter set kem/KINDI-256-3-4-2
	Parameter set kem/KINDI-512-2-2-2
	Parameter set kem/KINDI-512-2-4-1
	Parameter set kem/KINDI-256-5-2-2
	Parameter set kem/KINDI-512-3-2-1

	Analysis of known attacks (2.B.5)
	Advantages and limitations (2.B.6)
	References

